Chemero (2009), Chapter 4: The Dynamical Stance
Neuroscience

Chemero (2009), Chapter 4: The Dynamical Stance


The problem with the theory of representation Chemero settles on in the previous chapter, as we shall see, is that it makes representation unavoidable. If there are representations, then RECS fails to get off the ground (remember, the radical bit is anti-representationalism). In this chapter, Chemero identifies a path past this problem (the 'dynamical stance'), explains why it works, but then concludes with a new problem, that of how to guide future discovery.

Chemero identifies two levels at which one can deny representations. The first is metaphysical, that is, you can deny that there is anything like a representation in any cognitive system; this is a philosophical hypothesis. The second is epistemological, where you simply claim that none of our theories of cognition need feature representations, without taking a stand on what cognitive systems are actually made from. This is more a scientific hypothesis. Chemero will argue that the former argument is indefensible, because of how wide-reaching the definition of representation is, and will advocate defending the latter epistemological hypothesis, suggesting radical embodied cognitive scientists should simply adopt a dynamical stance in our theorising and experimentation. Philosophers of science should recognise the origin of this approach as Daniel Dennett's intentional stance, where you simply work from the assumption that an agent has beliefs and desires and, on that basis alone, quickly and efficiently predict it's behaviour without worrying about the details of the mechanism (Dennett, 1987). In the same way, Chemero is advocating that we should be satisfied with the kind of complete, counter-factual supporting dynamical models that are becoming more common in cognitive science, and not try to add a representational gloss.

Watts governors & evolutionary robotics
van Gelder (1995) described the Watts steam governor as a classic example of a non-computational, non-representational dynamical system that could serve as a model for the radical anti-representationalist. and support for the metaphysical claim. Sabrina has discussed this paper at length, but to summarise, the Watts governor is a calibrated device for controlling the engine speed of a steam driven engine. According to van Gelder, it is best described as two non-linear dynamical systems (the governor and the throttle valve) which are coupled together to produce the required stable speed. The equation of motion for the governor describes how the angle, θ, between two arms changes as a function of, in part, the speed of the engine ω; the equation for ω in turn,depends in part on θ. The two equations are thus coupled (non-linearly, as it happens).

There are two representational accounts of this system; one is computational (van Gelder describes a computational algorithm for changing the speed if it is found to be incorrect but rejects it as not actually describing anything present in the system), and one simply claims that the arm angle θ represents the speed of the engine. van Gelder resists the latter account entirely, but Chemero is convinced that, according to the theory of representation from Chapter 3, θ is a representation of ω and thus there is a legitimate representational account of the governor. Given the existence of this account, the Watts governor is not a slam dunk case for the metaphysical claim that there are no representations.

Chemero is happy, however, that it is support for the epistemological claim, because it is not clear the representational story adds anything to the dynamical account. Critically, the dynamical account must come first; you can't tell a traditional representational story without some idea of the function of the system, which in this case comes from the dynamical account. Given that it doesn't add anything, you might simply wish to stop with the dynamical account and not concern yourself with the representation that is in the system; you could, in Chemero's phrase, simply take the dynamical stance towards the system in question. (This analysis is the topic of a paper by Nielson, 2010.)

Like the intentional stance, the dynamical stance is only worth taking if it works. Chemero therefore notes that the dynamical stance is worthwhile if and only if there a) is a large class of dynamical models which don't need a representational 'gloss', and b) these models include the best explanations for cognitive phenomena. The latter is an empirical question; Chemero now discusses an example that supports the former requirement, evolutionary robotics ('Sussex robots').

These robots are allowed to evolve, with the only selection pressure success at their current task. The strategy is to allow the robots to find a solution to the problem without having the solution programmed into them. The Sussex group describe the robot and environment as coupled dynamical systems. For example, a robot evolved to track targets can be fully described as a simple recurrent feedback network. It's environment is then fully described as a state space defined in terms of egocentric polar coordinates - all you need to know is the distance from the robot to the centre of the space, and the clockwise angle it needs to turn to face it. (Creating a space like this is directly analogous to what we do to characterise coordination, where we use relative phase as the 'world' variable.) These two dynamical systems are then simply coupled, and the required dynamics (tracking behaviour) then emerges from this coupled system in the form of a point attractor on the target (see Harvey et al, 1994).

Under the traditional theory of representation Chemero is targeting, there is still a representational account for this robot. The system contains visual input nodes ('representation producers') which produce activations across intermediate nodes ('representations') which affect the behaviour of motors via three other nodes ('representation consumers') to produce the tracking behaviour ('adapting the system to some part of the environment'). But Chemero describes (p.77) how this representational gloss doesn't help - it could only be constructed after we had the dynamical account, and the dynamical account already provides a complete characterisation of all possible behaviours: we can use it to predict behaviour with no reference to the representational story. Taking the dynamical stance has 'paid off', and while it remains an ongoing task for dynamical systems cognitive science to actually produce these types of models, there are already numerous examples in the literature of dynamical accounts of complex behaviour which make no reference to representation.

Guides to discovery
So the dynamical stance seems to be a sensible epistemological approach - we can fully describe and predict behaviour using dynamical systems terms without any mention of representations, and while there may indeed be a representational story for every dynamical one, they do not necessarily add any descriptive or explanatory power. So we can do cognitive science without representations.

Or can we? For better or for worse, the theory that cognition is representational (and, in general, computational) has been a productive theory because it is, actually, a theory in the scientific sense. Scientists can use it to make predictions, and design experiments to test the prediction. In other words, representational theories of cognition serve as a guide to discovery. Chemero highlights the fact that the dynamical systems approach is effectively phenomena driven - you find a behaviour, and characterise the system with a model, but it's all after the empirical fact: the model didn't suggest the next experiment to run. This is a real problem - historically, it mirrors a fight in physics between the theory of unobservable atoms and Mach's phenomenology, which Mach lost entirely and for the good reason that atom theory could drive experimental work while phenomenology cannot. Regardless of whether there actually are representations, it would seem that the most productive way to progress is to act as if there are, so that the field can progress.* If this is the case, then even the (comparatively weak) dynamical stance is the wrong move, and RECS, again, fails to get off the ground.

The next section of the book lays out two suggestions: Chemero will propose that a) actually, dynamical models can, in and of themselves, serve as a guide to discovery, and b) a version of Gibson's ecological psychology will also provide the theoretical tools a radical embodied cognitive psychologist will require.

Some thoughts
It's about this point that I really start to worry about the definition of representation that Chemero is using; it is apparently so broad as to start losing it's explanatory value. This may be the case, although Chemero did go to great lengths in the previous chapter to avoid setting up a straw man. But if this is what representations are, I'm happy to not be using them.

I am not actually convinced that the representational accounts of, say, the Watts governor make any sense at all. These accounts focus on the arm angle as a representation of speed; Neilsen (2010), for instance, tries to make the dynamical account representational by rearranging the equation of motion so that it is expressed with the arm angle on the left hand side of the equation. This is certainly possible, but a) hardly convincing given b) the original differential equation is presumably written with respect to the spindle for a reason, namely that is what is to be controlled. I think I take Chemero's point about this being a mere representational gloss fairly seriously: it's just not helping, at all. That said, I think 'stances' (intentional or dynamical) are fairly weak as well, so I'm more interested in arguments that enable me to avoid representational talk for reasons other than convenience.

The next sections are designed to provide some tools along these lines. The dynamical model Chemero is going to use as an example of a guide to discovery is the HKB model. This is an odd move, given that a) Kelso explicitly described his approach as phenomenological and b) the discoveries the HKB model guided us to mostly suggest this approach is incorrect. In my next post I'll critique this in more detail.

I am, of course,on board with Chemero's other suggestion, that a) dynamical systems is not a theory of behaviour but that b) Gibsonian ecological psychology can and should be the theory of choice. I'll have plenty of words to say about the specific flavour of ecological psychology Chemero will endorse, though (I've already talked about the issue of affordances).

_______________________
*Of course, one problem with modern psychology is that people have forgotten this distinction.

References
Dennett, D. (1987). The Intentional Stance. Cambridge Mass: MIT Press.

Harvey, I., P. Husbands, and D. Cliff (1994). Seeing the light: Artificial evolution, real vision. In From Animals to Animats 3, ed. D. Cliff, P. Husbands, J. A. Meyer, and S. W. Wilson. Cambridge, Mass.: MIT Press.

Neilsen, K. S. (2010). Representation and dynamics. Philosophical Psychology, 23(6), 759-773. DOI

Van Gelder, T. (1995). What might cognition be, if not computation. The Journal of Philosophy, 92(7), 345-381.  Download




- Dynamic Mechanistic Explanations In Radical Embodied Cognitive Science
I'm on my way back from an enactivist/embodiment conference in Warsaw. I gave a talk (slides) in which I argued that in order to make theories of distributed/embodied cognition work, you have to have something like a theory of ecological information...

- Chemero (2009) Chapter 9 - The Metaphysics Of Radical Embodiment
The final chapter of RECS tackles the metaphysical implications of the radical stance. Gibson was a staunch realist, but there are some odd elements to entities like affordances that, to certain minds, sound like idealism or antirealism of some kind....

- Chemero (2009), Chapter 2: Embodied Cognition
Chemero spent Chapter 1 creating space for himself and his book in the marketplace of ideas about how we should do our cognitive science. Chapter 2 is about situating his theory in amongst the competition, with the goal of establishing exactly what a...

- New Reading Group: Chemero (2009), Radical Embodied Cognitive Science
I thought it was time to pick up the next book I have on my list to go through here on the blog. This is Tony Chemero's book, Radical Embodied Cognitive Science (hence RECS). I've read through it once, and it inspired me to write on affordances...

- What Else Could It Be? The Case Of The Centrifugal Govenor.
Previously, I’ve dismissed the idea of mental representation because 1) no one knows what a representation is and 2) the arguments for representation tend to be pretty weak. Now, I’d like to spend a bit of time discussing a possible alternative –...



Neuroscience








.